Dissociable fronto-striatal effects of dopamine D2 receptor stimulation on cognitive versus motor flexibility.
نویسندگان
چکیده
Genetic and pharmacological studies suggest an important role of the dopamine D2 receptor (DRD2) in flexible behavioral adaptation, mostly shown in reward-based learning paradigms. Recent evidence from imaging genetics indicates that also intentional cognitive flexibility, associated with lateral frontal cortex, is affected by variations in DRD2 signaling. In the present functional magnetic resonance imaging (MRI) study, we tested the effects of a direct pharmacological manipulation of DRD2 stimulation on intentional flexibility in a task-switching context, requiring switches between cognitive task rules and between response hands. In a double blind, counterbalanced design, participants received either a low dose of the DRD2 agonist bromocriptine or a placebo in two separate sessions. Bromocriptine modulated the blood-oxygen-level-dependent (BOLD) signal during rule switching: rule-switching-related activity in the left posterior lateral frontal cortex and in the striatum was increased compared to placebo, at comparable performance levels. Fronto-striatal connectivity under bromocriptine was slightly increased for rule switches compared to rule repetitions. Hand-switching-related activity, in contrast, was reduced under bromocriptine in sensorimotor regions. Our results provide converging evidence for an involvement of DRD2 signaling in fronto-striatal mechanisms underlying intentional flexibility, and indicate that the neural mechanisms underlying different types of flexibility (cognitive vs motor) are affected differently by increased dopaminergic stimulation.
منابع مشابه
Controlling human striatal cognitive function via the frontal cortex.
Cognitive flexibility is known to depend on the striatum. However, the striatum does not act in isolation to bias cognitive flexibility. In particular, cognitive flexibility also implicates the frontal cortex. Here we tested the hypothesis that the human frontal cortex controls cognitive flexibility by regulating striatal function via topographically specific frontostriatal connections. To this...
متن کاملShifts in striatal responsivity evoked by chronic stimulation of dopamine and glutamate systems.
Dopamine and glutamate are key neurotransmitters in cortico-basal ganglia loops affecting motor and cognitive function. To examine functional convergence of dopamine and glutamate neurotransmitter systems in the basal ganglia, we evaluated the long-term effects of chronic stimulation of each of these systems on striatal responses to stimulation of the other. First we exposed rats to chronic int...
متن کاملDissociable Effects of Dopamine on Neuronal Firing Rate and Synchrony in the Dorsal Striatum
Previous studies showed that dopamine depletion leads to both changes in firing rate and in neuronal synchrony in the basal ganglia. Since dopamine D1 and D2 receptors are preferentially expressed in striatonigral and striatopallidal medium spiny neurons, respectively, we investigated the relative contribution of lack of D1 and/or D2-type receptor activation to the changes in striatal firing ra...
متن کاملLateral hypothalamus chemical stimulation-induced antinociception was attenuated by injection of dopamine D1 and D2 receptor antagonists in the ventral tegmental area
Introduction: Stimulation or inactivation of the lateral hypothalamus (LH) produces antinociception. Studies showed a role for the ventral tegmental area (VTA) in the antinociception induced by LH chemical stimulation through the orexinergic receptors. In this study, we assessed the role of intra-VTA dopamine D1 and D2 receptors in antinociceptive effects of cholinergic agonist, carbachol, m...
متن کاملA thalamocorticostriatal dopamine network for psychostimulant-enhanced human cognitive flexibility.
BACKGROUND Everyday life demands continuous flexibility in thought and behavior. We examined whether individual differences in dopamine function are related to variability in the effects of amphetamine on one aspect of flexibility: task switching. METHODS Forty healthy human participants performed a task-switching paradigm following placebo and oral amphetamine administration. [(18)F]fallypri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cortex; a journal devoted to the study of the nervous system and behavior
دوره 49 10 شماره
صفحات -
تاریخ انتشار 2013